

Background

- Mutations in the BRCA genes predispose to developing breast, ovarian and other cancers.
- cancer drugs, here in BRCA-mutated tumors.

Materials & Methods

- A PubMed search was performed on 15 July 2019 to identify which of the **293 ReDO (Repurposing** meta-data from PubMed was generated.
- Each abstract was assessed for relevance, evidence (preclinical, clinical) and biological effect (single agent activity in BRCA-mutated cancer, association with PARP inhibitors).
- For relevant drugs, additional data were gathered from clinical trial registries to assess whether trials in *BRCA*-mutated cancers or with PARP-inhibitors were ongoing.

Results

- From the 293 ReDO drugs, 147 (50%) had at least one article reporting an effect related to BRCA or PARP, for a total of 1,364 abstracts. 73 drugs (25%) were considered to have a possibly beneficial
- 11 drugs (4%) were considered worthy of further research in breast cancer (Table 1).
- Five of these 11 drugs (aspirin, metformin, mifepristone, sirolimus and vitamin D3) are trialed in the preoperative, adjuvant, neoadjuvant and advanced breast cancer settings.
- Whereas 3 trials investigate the role of vitamin D3, metformin or mifepristone as chemo-preventive BRCA-mutated cancer patients or in combination with PARP inhibitors.

Finding existing drugs potentially active against BRCA-mutated breast cancers: a literature-based approach Sergio Crispino^{*1}, Pan Pantziarka^{1,2}, Lydie Meheus¹, Gauthier Bouche¹ ¹ Anticancer Fund, Brussels, Belgium ² The George Pantziarka TP53 Trust, London, UK - * presenting author

• Poly (ADP-ribose) polymerase (PARP) inhibitors represent one treatment option in the treatment of BRCA-mutated cancers. Platinum salts have been proposed as another option since they induce DNA breaks that then require proficient BRCA for repair. Next to this 'soft' repurposing – using an anticancer drug to treat another cancer – we sought to identify 'hard' repurposing opportunities – using non-

Drugs in Oncology) drugs had evidence of interaction with *BRCA* or PARP. A dataset of abstracts and

interaction with BRCA or PARP. Based on the abstracts, 15 drugs (5%) were selected but after reading the full articles, 4 drugs were then excluded because the data were still reconsidered too preliminary.

agents in high-risk patients (incl. BRCA patients), none of the 11 drugs is investigated therapeutically in

Conclusion

• We identified 11 non-cancer drugs that deserve further research in BRCA-mutated cancers or in combination with PARP-inhibitors. • Further studies are necessary to select which drugs could be repurposed as single agent, in combination with PARP inhibitors, or in combination with other treatments in patients with BRCA-mutated cancers. • Since those drugs have well-known clinical features, window of opportunity trials with biological endpoints represent an option to study their role with PARP inhibitors or in BRCA-mutated cancers. • The role of drugs widely used such as aspirin or metformin could also be investigated in retrospective datasets of patients with BRCA-mutated cancers or treated with PARP inhibitors.

Table 1: sel	ection of non-anticancer drugs that could in	teract with BRCA or with	PARP inhibitors
Drug Main indication	Rationale	Main reference(s)	Clinical Trials in BC (last update Feb 2020) Inc. trials with PARPi or in BRCA pop.
Aspirin Analgesia	 Associated with reduction of breast cancer incidence in <i>BRCA</i> mutation carriers Inhibits increased glycolysis induced by <i>BRCA1</i> mutation 	Kehm 2019 Breast Cancer Res Chiyoda 2017 Cancer Prev Res Wang 2019 Cancer	11 trials (chemoprev., preoperative, adjuvant, neoadjuvant, advanced) None
Artesunate Malaria	 Induces DNA double-strand breaks. More potent in cells defective in homologous recombination 	Li 2008 Cancer Res	None None
Chloroquine Malaria	 Enhances cisplatin effect on <i>BRCA</i>-deficient ovarian cancer cells. Augments carboplatin efficacy in TNBC cells by preventing repair of double-stranded DNA breaks 	Wan 2018 Endoc Relat Cancer Liang 2016 Cancer Lett	3 trials None
Metformin <i>Type 2 diabetes</i>	 Reverses resistance mechanisms induced by PARPi in TNBC Synergizes with denosumab by targeting RANKL, which is overexpressed in <i>BRCA</i>-mutated basal-like BC cells Inhibits metabolic 'reprogramming' induced by <i>BRCA1</i> loss Reduced gene expression of <i>BRCA1</i> in a window BC trial 	Han 2019 Am J Cancer Res Cuyàs 2017 Cell Cycle Cuyàs 2016 Cell Cycle Cuyàs 2016 Oncotarget Hadad 2011 Breast Cancer Res Treat	40+ trials (chemoprev., preoperative, adjuvant, neoadjuvant, advanced) 1 trial (chemoprev., ongoing)
Mifepristone Abortion	 Cytotoxic to BRCA-mutant ovarian cancer cells Prevents BC in a BRCA-deficient mice model 	Ponandai 2019 Acta Obstet Gynecol Scand Skor 2013 Clinc Cancer Res Poole 2006 Science	8 trials (chemoprev., preoperative & advanced) 1 trial (chemoprev., ongoing)
Minocycline Bacterial infection	 Is a potent PARP inhibitor Suppresses 5-FU-induced PARP-1 activity, increases 5-FU efficacy and reduces 5-FU toxicity in a colon cancer model 	Alano 2006 PNAS Huang 2009 Biochem Biophys Res Commun	2 trials (prev. of neuropathy, prevention of anxiety-depression) None
Nicotinamide <i>Vit B3 deficiency</i>	 Is a potent PARP inhibitor and a chemo- & radio-sensitizing agent regardless of the BRCA status in BC 	Domínguez-Gómez 2015 Oncol Res Chen 1993 Cancer Chemother Pharmacol	1 trial (prev. of neuropathy) None
Pyrvinium Pamoate <i>Pinworm infection</i>	 Re-sensitizes PARPi-resistant cancer cells to PARPi in vivo, through inhibition of hyperactivation of Wnt signaling induced by PARPi. 	Xu 2013 PloS One Yamamoto 2019 Mol Carcinog	None None
Sirolimus <i>Prevention of</i> <i>transplant</i> <i>rejection</i>	 In BRCA-mutated BC models, synergizes with PARPi through inhibition of homologous recombination (Rac51) & with through ribosomal protein S6 inhibition Restores sensitivity to PARPi in PARPi-resistant BRCA-deficient BC cells in vivo, through ribosomal protein S6 inhibition Radio-sensitizes through suppression of homologous recombination by impairing recruitment of BRCA1 and Rad51 in BC cells 	Osoegawa 2017 Oncotarget Vassilopoulos 2014 J Biol Chem Sun 2014 Oncotarget Chen 2011 Radiat Res	None (all done with new mTOR inhibitors but not with sirolimus) None
Spironolactone <i>Hypertension</i>	 Synergizes with both PARPi and cisplatin in vitro through inhibition of homology directed repair by impairing Rad51 foci formation 	Shahar 2014 Nucleic Acids Res	None None
Vitamin D3 <i>Vitamin D3</i> <i>deficiency</i>	 Vit D receptor expression is a good prognostic factor in <i>BRCA</i>+ BC Vit D upregulates <i>BRCA1</i> in BC cells Vit D sensitizes BC cells to PARPi, radiation and chemotherapy through interactions with DNA repair (several mechanisms reported) 	Heublein 2017 J Exp Clin Cancer Res Campbell 2000 Oncogene Graziano 2016 Oncogene Pickholtz 2014 Oncotarget Gonzalo 2014 J Steroid Biochem Mol Biol Hershberger 2001 Clin Cancer Res Bao 2014 Int J Mol Med	50+ trials (chemoprev., biomarkers, preoperative, adjuvant, neoadjuvant, advanced, supportive care) 1 trial (chemoprev., reported at ASCO 2018, no effect on mammographic density)
5-FU: 5-fluorouracil; BC: breast cancer; BRCA: breast cancer gene; CMV: cytomegalovirus; DNA: deoxyribonucleic acid; PARP: poly (ADP-ribose) polymerase; PARPi: PARP			

inhibitor; RANKL: receptor activator of nuclear factor kappa-B ligand; TNBC: triple-negative breast cancer;

This presentation is the intellectual property of the authors. Contact gauthier.bouche@anticancerfund.org for permission to reprint and/or distribute.